Generalized multivalued vector variational-like inequalities

Syed Shakaib Irfan • Rais Ahmad

Received: 2 April 2007 / Accepted: 22 January 2009 / Published online: 10 February 2009
© Springer Science+Business Media, LLC. 2009

Abstract

In this article, we consider a generalized multivalued vector variational-like inequality and obtain some existence results. The last result is proved by using the concept of escaping sequences. Some special cases are also discussed.

Keywords Generalized multivalued vector variational-like inequality • Existence result • Escaping sequence \cdot Closed graph \cdot Affine mapping

Mathematics Subject Classification (2000) $49 \mathrm{~J} 40 \cdot 47 \mathrm{H} 19 \cdot 47 \mathrm{H} 10$

1 Introduction and preliminaries

The vector variational inequality is a generalized form of a variational inequality, having applications in different areas of optimization, optimal control, operations research, economics equilibrium and free boundary value problems. It was introduced by [8] in finite dimensional Euclidean space in 1980. Since then, in a general setting [4], [5], [3] have derived an equivalance between the vector variational inequality and vector complementarity problem and proved the existence of solutions to the vector variational inequality.

In 1990, [6] introduced and studied vector variational inequality for multivalued mappings which they called generalized vector variational inequality. In 1993, [12] studied generalized vector variational inequalities in reflexive Banach spaces. In 2000, [9] studied the vector variational inequality and have shown its equivalence with vector equilibria.

[^0]The aim of this article is to derive two existence theorems for generalized multivalued vector variational-like inequalities.The last existence result is proved by using the concept of escaping sequences introduced in [2].

Let Y be Banach space with a convex cone P such that int $P \neq \phi$ and $P \neq Y$, where int denotes the interior. We use the following vector ordering:
(1) for any $x, y \in Y, y<x$ if and only if $y-x \in-\operatorname{int} P$;
(2) for any $x, y \in Y, y \nless x$ if and only if $y-x \notin-\operatorname{int} P$;
(3) for any two sets $A, B \subset Y, A<B$ if and only if $a<b$ for any $a \in A$ and any $b \in B$;
(4) for any two sets $A, B \subset Y, A \nless B$ if and only if $a \nless b$ for any $a \in A$ and any $b \in B$.

Let X be a nonempty subset of a Banach space E and Y a Banach space with a convex cone P such that int $P \neq \phi$ and $P \neq Y$. Let $T: K \rightarrow 2^{L(E, Y)}$ be a set-valued map, where $L(E, Y)$ is the space of all linear continuous mapping from E into $Y, \eta: X \times X \rightarrow Y$ and $g: X \rightarrow Y$ be the mappings.

We consider the following generalized multivalued vector variational-like inequality (GMVVLI):
(GMVVLI)

$$
\left\{\begin{array}{l}
\text { Find } x_{0} \in X \text { such that } \\
\left\langle s_{0}, \eta\left(x, x_{0}\right)\right\rangle+g(x)-g\left(x_{0}\right) \nless 0 \text { for any } x \in X \text { and } s_{0} \in T\left(x_{0}\right) .
\end{array}\right.
$$

where $\langle s, x\rangle$ is the evaluation of s at x.
If $\eta\left(x, x_{0}\right)=x-x_{0}$, then (GMVVLI) reduces to the following generalized vector variational inequality (GVVI), introduced and studied by [11].
(GVVI) $\left\{\begin{array}{l}\text { Find } x_{0} \in X \text { such that } \\ \left\langle s_{0}, x-x_{0}\right\rangle+g(x)-g\left(x_{0}\right) \nless 0 \text { for any } x \in X \text { and } s_{0} \in T\left(x_{0}\right) .\end{array}\right.$
If $g \equiv 0$ and $\eta\left(x, x_{0}\right)=x-x_{0}$, then (GMVVLI) collapses to the following vector variational inequality:
(VVI)

$$
\left\{\begin{array}{l}
\text { Find } x_{0} \in X \text { such that } \\
\left\langle s_{0}, x-x_{0}\right\rangle \nless 0 \text { for any } s_{0} \in T\left(x_{0}\right)
\end{array}\right.
$$

(VVI) is the same as the vector variational inequality introduced in [10] which was considered in an H-Banach Space.

Now we give some definitions and $K K M$-Fan Theorem needed for the proof of the existence results.

Definition 1.1 [7]. Let X be a subset of a topological space E. Then a set-valued map $F: X \rightarrow 2^{E}$ is called the $K K M$ map if for each finite subset $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ of X, $\operatorname{Co}\left\{x_{1}, x_{2}, \ldots x_{n}\right\} \subset \bigcup_{i=1}^{n} F\left(x_{i}\right)$, where $\operatorname{Co}\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ is the convex hull of $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$.

Definition 1.2 [2]. Let E be a topological space and X be a subset of E, such that $X=$ $\bigcup_{n=1}^{\infty} X_{n}$, where $\left\{X_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence of nonempty compact sets in the sense that $X_{n} \subseteq X_{n+1}$ for all $n \in N$. A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in X is said to be escaping sequence X (relative to $\left\{X_{n}\right\}_{n=1}^{\infty}$), if for each $n=1,2, \ldots$, there exist $m>0$ such that $x_{k} \notin X_{n}$ for all $k \geq m$.

Theorem 1.1 (KKM-FAN) [7]. Let X be a subset of a topological space E and $F: X \rightarrow 2^{E}$ a KKM map. Iffor each $x \in X, F(x)$ is closed and for at least one $x \in X, F(x)$ is compact, then $\bigcap_{x \in E} F(x) \neq \phi$.

2 Existence results

In this section, we prove two existence results for (GMVVLI). The last results is proved by using the concept of escaping sequences.

Theorem 2.1 Let X be a compact convex subset of Banach space E and Y a Banach space with convex cone P such that int $P \neq \phi$ and $P \neq Y$. Assume that:
(i) $T: X \rightarrow 2^{L(E, Y)}$ is a lower semicontinuous mapping;
(ii) $g: X \rightarrow Y$ is a continuous mapping;
(iii) $\eta: X \times X \rightarrow Y$ is a continuous mapping such that $\eta(x, x)=0$ for all $x \in X$;
(iv) the multivalued mapping $W: X \rightarrow 2^{Y}$ defined by $W(x)=Y /\{-$ int $P\}$, has a closed graph in $X \times Y$;
(v) for each $y \in X, B_{y}:=\{x \in X$: there exists $s \in T(y)$ such that $\langle s, \eta(x, y)\rangle+g(x)-$ $g(y)<0\}$ is convex.

Then the generalized multivalued vector variational-like inequality (GMVVLI) is solvable.
Proof Define a multivalued mapping $F: X \rightarrow 2^{E}$ by:
For any $x \in X, F(x)=\left\{y \in X:\left\langle s_{0}, \eta(x, y)\right\rangle+g(x)-g(y) \nless 0\right.$ for any $\left.s_{0} \in T(y)\right\}$.
We first prove that F is a KKM map. Suppose, to the contrary, F is not a KKM-map. Then the convex hull of every finite subset $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of X is not contained in the corresponding union $\bigcup_{i=1}^{n} F\left(x_{i}\right)$.

Let y be an element in the convex hull of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then $y=\sum_{i=1}^{n} \alpha_{i} x_{i}$ for some $\alpha_{i} \geq 0, i=1,2, \ldots, n$ with $\sum_{i=1}^{n} \alpha_{i}=1$ and y is not contained in $\bigcup_{i=1}^{n} F\left(x_{i}\right)$. Then, we have $\forall i \in\{1,2, \ldots, n\} \exists s_{0} \in T(y)$ such that

$$
\left\langle s_{0}, \eta\left(x_{i}, y\right)\right\rangle+g\left(x_{i}\right)-g(y)<0 .
$$

Since by assumption (v), B_{y} is convex, the convex hull of $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ is contained in B_{y}.
We have

$$
\left\langle s_{0}, \eta\left(\Sigma_{i=1}^{n} \alpha_{i} x_{i}, \Sigma_{i=1}^{n} \alpha_{i} x_{i}\right)\right\rangle+g\left(\Sigma_{i=1}^{n} \alpha_{i} x_{i}\right)-g\left(\Sigma_{i=1}^{n} \alpha_{i} y_{i}\right) \in-\operatorname{int} P .
$$

Thus, $0 \in-\operatorname{int} P$, but this contradicts $P \neq Y$. Therefor F is a KKM map.
Next we prove that for any $x \in X, F(x)$ is closed. Indeed, let $\left\{y_{n}\right\}$ be a sequence in $F(x)$ converging to $y_{*} \in X$. By the lower semicontinuity of T, for any $s_{*} \in T\left(y_{*}\right)$, there exists $s_{n} \in T\left(y_{n}\right)$ for all n such that the sequence $\left\{s_{n}\right\}$ converging to $s_{*} \in L(E, Y)$. Since $y_{n} \in F(x)$ for all n, we have

$$
\left\langle s_{n}, \eta\left(x, y_{n}\right)\right\rangle+g(x)-g\left(y_{n}\right) \nless 0
$$

or

$$
\left\langle s_{n}, \eta\left(x, y_{n}\right)\right\rangle+g(x)-g\left(y_{n}\right) \in W\left(y_{n}\right) .
$$

Since $\left\{s_{n}\right\}$ is bounded in $L(E, Y), \eta(.,),.\langle.,$.$\rangle and g$ are continuous. Also since W has a closed graph in $X \times Y$ and $s_{n} \rightarrow s_{*}, y_{n} \rightarrow y_{*}$, we have

$$
\left\langle s_{n}, \eta\left(x, y_{n}\right)\right\rangle+g(x)-g\left(y_{n}\right) \longrightarrow\left\langle s_{*}, \eta\left(x, y_{*}\right)\right\rangle+g(x)-g\left(y_{*}\right) \in W\left(y_{*}\right) .
$$

Hence $\left\langle s_{*}, \eta\left(x, y_{*}\right)\right\rangle+g(x)-g\left(y_{*}\right) \nless 0$. Thus $y_{*} \in F(x)$ and $F(x)$ is closed.

Further, since X is a compact subset of E and $F\left(y_{0}\right) \subset X$ for each $y_{0} \in X$. Hence $F\left(y_{0}\right)$ is compact. Therefore, the assumptions of Theorem 1.1 hold. By Theorem 1.1, $\bigcap_{x \in X} F(x) \neq \phi$ and hence there exists $x_{0} \in X$ such that

$$
\left\langle s_{0}, \eta\left(x, x_{0}\right)\right\rangle+g(x)-g\left(x_{0}\right) \nless 0 \quad \text { for any } x \in X \text { and any } s_{0} \in T\left(x_{0}\right) .
$$

The assumption (v) in Theorem 2.1 is strong. We can remove assumption (v) in Theorem 2.1 with some additional assumptions on η, g and W, where η, g and W are defined in (ii), (iii) and (iv) of the Theorem 2.1, respectively. Thus, we have a Corollary as follows.

Corollary 2.1 Let X be a compact convex subset of Banach space E and Y a Banach space with convex cone P such that int $P \neq \phi$ and $P \neq Y$. Assume that:
(i) $T: X \rightarrow 2^{L(E, Y)}$ is a lower semicontinuous mapping;
(ii) $g: X \rightarrow Y$ is a continuous affine mapping;
(iii) $\eta: X \times X \rightarrow Y$ is a continuous affine mapping such that $\eta(x, x)=0$ for all $x \in X$;
(iv) the multivalued mapping $W: X \rightarrow 2^{Y}$ defined by $W(x)=Y /\{-$ int $P\}$, has a closed graph in $X \times Y$ and W is convex.

Then the generalized multivalued vector variational-like inequality (GMVVLI) is solvable.
Proof It is sufficient to prove that for each $y \in X$, the set $B_{y}=\left\{x \in X:\left\langle s_{0}, \eta(x, y)\right\rangle+\right.$ $g(x)-g(y)<0$ for any $\left.s_{0} \in T(y)\right\}$ is convex. To see this, let $x_{1}, x_{2} \in B_{y}$ and $\alpha, \beta \geq 0$ such that $\alpha+\beta=1$. Then for each $s_{0} \in T(y)$ we have

$$
\begin{equation*}
\left\langle s_{0}, \eta\left(x_{1}, y\right)\right\rangle+g\left(x_{1}\right)-g(y) \in-\operatorname{intP} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle s_{0}, \eta\left(x_{2}, y\right)\right\rangle+g\left(x_{2}\right)-g(y) \in-\operatorname{intP} \tag{2}
\end{equation*}
$$

multiplying (1) by α and (2) by β and adding, we have
$\alpha\left\langle s_{0}, \eta\left(x_{1}, y\right)\right\rangle+\alpha g\left(x_{1}\right)-\alpha g(y)+\beta\left\langle s_{0}, \eta\left(x_{2}, y\right)\right\rangle+\beta g\left(x_{2}\right)-\beta g(y) \notin \alpha W(y)+\beta W(y)$.
Since $\eta(.,),$.$g are affine and W$ is concave, we have

$$
\left\langle s_{0}, \eta\left(\alpha x_{1}+\beta x_{2}, y\right)\right\rangle+g\left(\alpha x_{1}+\beta x_{2}\right)-g(y) \in W(y)
$$

or

$$
\left\langle s_{0}, \eta\left(\alpha x_{1}+\beta x_{2}, y\right)\right\rangle+g\left(\alpha x_{1}+\beta x_{2}\right)-g(y)<0
$$

and hence B_{y} is convex.
Remark 2.1 (i) Theorem 2.1 generalizes and improves the corresponding results in [1,11].
(ii) Corrollary 2.1 is a generaliztion of corrollary 2.1 in [11].

Theorem 2.2 Let X be a compact convex subset of Banach space E and Y a Banach space with convex cone P such that int $P \neq \phi$ and $P \neq Y$. Let $X=\bigcup_{n=1}^{\infty} X_{n}$ where $\left\{X_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence of nonempty compact sets in the sense that $X_{n} \subseteq X_{n+1}$ for all $n \in N$. Assume that:
(i) $T: X \rightarrow 2^{L(E, Y)}$ is a lower semicontinuous mapping;
(ii) $g: X \rightarrow Y$ is a continuous mapping;
(iii) $\eta: X \times X \rightarrow Y$ is a continuous mapping such that $\eta(x, x)=0$ for all $x \in X$;
(iv) the multivalued mapping $W(x)=Y /\{-i n t P\}$ has a closed graph in $x \times Y$;
(v) for each $y \in X, B_{y}:=\{x \in X$: there exists $\in T(y)$ such that $\langle s, \eta(x, y)\rangle+g(x)$ $-g(y)<0\}$ is convex.
(vi) for each sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ in X with $y_{n} \in X_{n}, n \in N$ which is escaping from X relative to $\left\{X_{n}\right\}_{n=1}^{\infty}$ there exists $m \in N$ and $x_{m} \in X_{m}$ such that

$$
\left\langle s_{m}, \eta\left(x_{m}, y_{m}\right)\right\rangle+g\left(x_{m}\right)-g\left(y_{m}\right)<0 .
$$

Then there exists $y^{*} \in X$ such that

$$
\left\langle s^{*}, \eta\left(x, y^{*}\right)\right\rangle+g(x)-g\left(y^{*}\right) \nless 0, \quad \text { for any } s^{*} \in T\left(y^{*}\right) .
$$

Proof Since for each $n \in N, X_{n}$ is compact and convex set in E, applying Theorem 2.1, we have for all $n \in N$, there exists $y_{n} \in X_{n}$ such that

$$
\begin{equation*}
\left\langle s_{n}, \eta\left(x, y_{n}\right)\right\rangle+g(x)-g\left(y_{n}\right) \nless 0, \quad \text { for all } s_{n} \in T\left(y_{n}\right) \tag{3}
\end{equation*}
$$

suppose that the sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ be escaping sequence from X relative to $\left\{X_{n}\right\}_{n=1}^{\infty}$. By (vi) there exists $m \in N$ and $x_{m} \in X_{n}$ such that

$$
\left\langle s_{m}, \eta\left(x_{m}, y_{m}\right)\right\rangle+g\left(x_{m}\right)-g\left(y_{m}\right)<0,
$$

which contradicts (3). Hence $\left\{y_{n}\right\}_{n=1}^{\infty}$ is not an escaping sequence from X relative to $\left\{X_{n}\right\}_{n=1}^{\infty}$. Therefore, there exists $r \in N$ and there is some subsequence $\left\{y_{j_{n}}\right\}$ of $\left\{y_{n}\right\}_{n=1}^{\infty}$ which must lie entirely in X_{r}. Since X_{r} is compact, there is a subsequence $\left\{y_{i_{n}}\right\}_{i_{n} \in \wedge}$ of $\left\{y_{j_{n}}\right\}$ in X_{r} and there exists $y^{*} \in X_{r}$ such that $y_{i_{n}} \rightarrow y^{*}$, where $i_{n} \rightarrow \infty$. Since $\left\{X_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence we have for all $x \in X$ there exists $i_{0} \in \wedge$ with $i_{0}>r$, such that $x \in X_{i_{0}}$ for all $i_{n} \in \wedge$ and $i_{n}>i_{0}$, we have $x \in X_{i_{0}} \subseteq X_{i_{n}}$ and $T\left(y_{i_{n}}\right) \subseteq T\left(X_{r}\right)$ such that

$$
\left\langle s_{i_{n}}, \eta\left(x, y_{i_{n}}\right)\right\rangle+g(x)-g\left(y_{i_{n}}\right) \nless 0, \text { for any } s_{i_{n}} \in T\left(y_{i_{n}}\right),
$$

which implies that

$$
\left\langle s_{i_{n}}, \eta\left(x, y_{i_{n}}\right)\right\rangle+g(x)-g\left(y_{i_{n}}\right) \in W\left(y_{i_{n}}\right),
$$

using the same argument as in Theorem 2.1, we have

$$
\left\langle s^{*}, \eta\left(x, y^{*}\right)\right\rangle+g(x)-g\left(y^{*}\right) \nless 0 .
$$

The result follows.

References

1. Ansari, Q.H.: On generalized vector variational-like inequalities. Ann. Sci. Math. Quebec 19, 131137 (1995)
2. Border, K.C.: Fix point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge (1985)
3. Chen, G.Y.: Existence of solutions for a vector variational inequality: an extension of Hartman-Stampacchia theorem. J. Optim. Theory Appl. 74, 445-456 (1992)
4. Chen, G.Y., Chang, G.M.: Vector variational inequalities and vector optimization. Lecture Notes in Economics and Mathematical Systems, 285, Springer-Varlag (1987)
5. Chen, G.Y., Yang, X.Q.: Vector complementarity problems and its equivalences with weak minimal element in ordered spaces. J. Math. Anal. Appl. 153, 136-158 (1990)
6. Chen, G.Y., Craven, B.D.: A vector variational inequality and optimization over an efficient set. Zeitscrift for Operations Reasearch 3, 1-12 (1990)
7. Fan, K.: A generalization of Tychonoffs fixed point theorem. Math. Anal. 142, 305-310 (1961)
8. Giannessi, F.: Theorems of alternative quadratic programs and complementarity problems. In: Cottle, R., Giannessi, F., Lions J.L. (eds.) Variational Inequalities and Complementarity Problems. Wiley, Chichester (1990)
9. Giannessi. F.: In: Cottle, R., Giannessi, F., Lions, J.L. (eds.) Vector variational inequality and vector equilibria mathematical theorems. Kluwer Acadamic Publishers, Dordrecht/Boston/London (2000)
10. Lee, G.M., Kim, D.S., Lee, B.S.: Generalized vector variational inequality. Appl. Math. Lett. 9(1), 39-42 (1996)
11. Lee, G.M., Kim, D.S., Lee, B.S., Chen, G.Y.: Generalized vector variational inequality and its duality and set-valued maps. Appl. Math. Lett. 11(4), 21-26 (1998)
12. Lee, G.M., Kim, D.S., Lee, B.S., Cho, S.J.: Generalized vector variational inequality and fuzzy extention. Appl. Math. Lett. 6, 47-51 (1993)

[^0]: S. S. Irfan (\boxtimes)

 College of Engineering, Qassim University, P. O. Box 6677, Buraidah, Al-Qassim 51452, Saudi Arabia
 e-mail: shakaib11@rediffmail.com
 R. Ahmad

 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
 e-mail: raisain@lycos.com

