Generalized multivalued vector variational-like inequalities

Syed Shakaib Irfan · Rais Ahmad

Received: 2 April 2007 / Accepted: 22 January 2009 / Published online: 10 February 2009 © Springer Science+Business Media, LLC. 2009

Abstract In this article, we consider a generalized multivalued vector variational-like inequality and obtain some existence results. The last result is proved by using the concept of escaping sequences. Some special cases are also discussed.

Keywords Generalized multivalued vector variational-like inequality · Existence result · Escaping sequence · Closed graph · Affine mapping

Mathematics Subject Classification (2000) 49J40 · 47H19 · 47H10

1 Introduction and preliminaries

The vector variational inequality is a generalized form of a variational inequality, having applications in different areas of optimization, optimal control, operations research, economics equilibrium and free boundary value problems. It was introduced by [8] in finite dimensional Euclidean space in 1980. Since then, in a general setting [4], [5], [3] have derived an equivalance between the vector variational inequality and vector complementarity problem and proved the existence of solutions to the vector variational inequality.

In 1990, [6] introduced and studied vector variational inequality for multivalued mappings which they called generalized vector variational inequality. In 1993, [12] studied generalized vector variational inequalities in reflexive Banach spaces. In 2000, [9] studied the vector variational inequality and have shown its equivalence with vector equilibria.

R. Ahmad

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India e-mail: raisain@lycos.com

S. S. Irfan (🖂)

College of Engineering, Qassim University, P. O. Box 6677, Buraidah, Al-Qassim 51452, Saudi Arabia e-mail: shakaib11@rediffmail.com

The aim of this article is to derive two existence theorems for generalized multivalued vector variational-like inequalities. The last existence result is proved by using the concept of escaping sequences introduced in [2].

Let *Y* be Banach space with a convex cone *P* such that *int* $P \neq \phi$ and $P \neq Y$, where *int* denotes the interior. We use the following vector ordering:

- (1) for any $x, y \in Y$, y < x if and only if $y x \in -intP$;
- (2) for any $x, y \in Y, y \notin x$ if and only if $y x \notin -intP$;
- (3) for any two sets $A, B \subset Y, A < B$ if and only if a < b for any $a \in A$ and any $b \in B$;
- (4) for any two sets $A, B \subset Y, A \not\leq B$ if and only if $a \not\leq b$ for any $a \in A$ and any $b \in B$.

Let X be a nonempty subset of a Banach space E and Y a Banach space with a convex cone P such that $int P \neq \phi$ and $P \neq Y$. Let $T : K \rightarrow 2^{L(E,Y)}$ be a set-valued map, where L(E, Y) is the space of all linear continuous mapping from E into Y, $\eta : X \times X \rightarrow Y$ and $g : X \rightarrow Y$ be the mappings.

We consider the following *generalized multivalued vector variational-like inequality* (GMVVLI):

(GMVVLI)
$$\begin{cases} \text{Find } x_0 \in X \text{ such that} \\ \langle s_0, \eta(x, x_0) \rangle + g(x) - g(x_0) \not< 0 \text{ for any } x \in X \text{ and } s_0 \in T(x_0). \end{cases}$$

where $\langle s, x \rangle$ is the evaluation of *s* at *x*.

If $\eta(x, x_0) = x - x_0$, then (GMVVLI) reduces to the following generalized vector variational inequality (GVVI), introduced and studied by [11].

(GVVI) $\begin{cases} \text{Find } x_0 \in X \text{ such that} \\ \langle s_0, x - x_0 \rangle + g(x) - g(x_0) \not< 0 \text{ for any } x \in X \text{ and } s_0 \in T(x_0). \end{cases}$

If $g \equiv 0$ and $\eta(x, x_0) = x - x_0$, then (GMVVLI) collapses to the following vector variational inequality:

(VVI)

$$\begin{cases} \text{Find } x_0 \in X \text{ such that} \\ \langle s_0, x - x_0 \rangle \not< 0 \text{ for any } s_0 \in T(x_0) \end{cases}$$

(VVI) is the same as the vector variational inequality introduced in [10] which was considered in an *H*-Banach Space.

Now we give some definitions and KKM-Fan Theorem needed for the proof of the existence results.

Definition 1.1 [7]. Let X be a subset of a topological space E. Then a set-valued map $F : X \to 2^E$ is called the *KKM* map if for each finite subset $\{x_1, x_2, \ldots x_n\}$ of X, $\operatorname{Co}\{x_1, x_2, \ldots x_n\} \subset \bigcup_{i=1}^n F(x_i)$, where $\operatorname{Co}\{x_1, x_2, \ldots x_n\}$ is the convex hull of $\{x_1, x_2, \ldots x_n\}$.

Definition 1.2 [2]. Let *E* be a topological space and *X* be a subset of *E*, such that $X = \bigcup_{n=1}^{\infty} X_n$, where $\{X_n\}_{n=1}^{\infty}$ is an increasing sequence of nonempty compact sets in the sense that $X_n \subseteq X_{n+1}$ for all $n \in N$. A sequence $\{x_n\}_{n=1}^{\infty}$ in *X* is said to be escaping sequence *X* (relative to $\{X_n\}_{n=1}^{\infty}$), if for each n = 1, 2, ..., there exist m > 0 such that $x_k \notin X_n$ for all $k \ge m$.

Theorem 1.1 (KKM-FAN) [7]. Let X be a subset of a topological space E and $F : X \to 2^E$ a KKM map. If for each $x \in X$, F(x) is closed and for at least one $x \in X$, F(x) is compact, then $\bigcap_{x \in E} F(x) \neq \phi$.

2 Existence results

In this section, we prove two existence results for (GMVVLI). The last results is proved by using the concept of escaping sequences.

Theorem 2.1 Let X be a compact convex subset of Banach space E and Y a Banach space with convex cone P such that int $P \neq \phi$ and $P \neq Y$. Assume that:

- (i) $T: X \to 2^{L(E,Y)}$ is a lower semicontinuous mapping;
- (ii) $g: X \to Y$ is a continuous mapping;
- (iii) $\eta: X \times X \to Y$ is a continuous mapping such that $\eta(x, x) = 0$ for all $x \in X$;
- (iv) the multivalued mapping $W: X \to 2^Y$ defined by $W(x) = Y/\{-intP\}$, has a closed graph in $X \times Y$;
- (v) for each $y \in X$, $B_y := \{x \in X : there exists s \in T(y) such that <math>\langle s, \eta(x, y) \rangle + g(x) g(y) < 0\}$ is convex.

Then the generalized multivalued vector variational-like inequality (GMVVLI) is solvable.

Proof Define a multivalued mapping $F: X \to 2^E$ by:

For any $x \in X$, $F(x) = \{y \in X : \langle s_0, \eta(x, y) \rangle + g(x) - g(y) \notin 0 \text{ for any } s_0 \in T(y) \}.$

We first prove that *F* is a KKM map. Suppose, to the contrary, *F* is not a KKM-map. Then the convex hull of every finite subset $\{x_1, x_2, \ldots, x_n\}$ of *X* is not contained in the corresponding union $\bigcup_{i=1}^{n} F(x_i)$.

Let y be an element in the convex hull of $\{x_1, x_2, ..., x_n\}$. Then $y = \sum_{i=1}^n \alpha_i x_i$ for some $\alpha_i \ge 0, i = 1, 2, ..., n$ with $\sum_{i=1}^n \alpha_i = 1$ and y is not contained in $\bigcup_{i=1}^n F(x_i)$. Then, we have $\forall i \in \{1, 2, ..., n\} \exists s_0 \in T(y)$ such that

$$\langle s_0, \eta(x_i, y) \rangle + g(x_i) - g(y) < 0.$$

Since by assumption (v), B_y is convex, the convex hull of $\{x_1, x_2, \dots, x_n\}$ is contained in B_y . We have

$$\langle s_0, \eta(\sum_{i=1}^n \alpha_i x_i, \sum_{i=1}^n \alpha_i x_i) \rangle + g(\sum_{i=1}^n \alpha_i x_i) - g(\sum_{i=1}^n \alpha_i y_i) \in -intP$$

Thus, $0 \in -int P$, but this contradicts $P \neq Y$. Therefor F is a KKM map.

Next we prove that for any $x \in X$, F(x) is closed. Indeed, let $\{y_n\}$ be a sequence in F(x) converging to $y_* \in X$. By the lower semicontinuity of T, for any $s_* \in T(y_*)$, there exists $s_n \in T(y_n)$ for all n such that the sequence $\{s_n\}$ converging to $s_* \in L(E, Y)$. Since $y_n \in F(x)$ for all n, we have

$$\langle s_n, \eta(x, y_n) \rangle + g(x) - g(y_n) \neq 0$$

or

$$\langle s_n, \eta(x, y_n) \rangle + g(x) - g(y_n) \in W(y_n).$$

Since $\{s_n\}$ is bounded in L(E, Y), $\eta(., .)$, $\langle ., .\rangle$ and g are continuous. Also since W has a closed graph in $X \times Y$ and $s_n \to s_*, y_n \to y_*$, we have

$$\langle s_n, \eta(x, y_n) \rangle + g(x) - g(y_n) \longrightarrow \langle s_*, \eta(x, y_*) \rangle + g(x) - g(y_*) \in W(y_*).$$

Hence $\langle s_*, \eta(x, y_*) \rangle + g(x) - g(y_*) \neq 0$. Thus $y_* \in F(x)$ and F(x) is closed.

Deringer

Further, since X is a compact subset of E and $F(y_0) \subset X$ for each $y_0 \in X$. Hence $F(y_0)$ is compact. Therefore, the assumptions of Theorem 1.1 hold. By Theorem 1.1, $\bigcap_{x \in X} F(x) \neq \phi$ and hence there exists $x_0 \in X$ such that

 $\langle s_0, \eta(x, x_0) \rangle + g(x) - g(x_0) \not< 0$ for any $x \in X$ and any $s_0 \in T(x_0)$.

The assumption (v) in Theorem 2.1 is strong. We can remove assumption (v) in Theorem 2.1 with some additional assumptions on η , g and W, where η , g and W are defined in (ii), (iii) and (iv) of the Theorem 2.1, respectively. Thus, we have a Corollary as follows.

Corollary 2.1 Let X be a compact convex subset of Banach space E and Y a Banach space with convex cone P such that int $P \neq \phi$ and $P \neq Y$. Assume that:

- (i) $T: X \to 2^{L(E,Y)}$ is a lower semicontinuous mapping;
- (ii) $g: X \to Y$ is a continuous affine mapping;
- (iii) $\eta: X \times X \to Y$ is a continuous affine mapping such that $\eta(x, x) = 0$ for all $x \in X$;
- (iv) the multivalued mapping $W : X \to 2^Y$ defined by $W(x) = Y/\{-intP\}$, has a closed graph in $X \times Y$ and W is convex.

Then the generalized multivalued vector variational-like inequality (GMVVLI) is solvable.

Proof It is sufficient to prove that for each $y \in X$, the set $B_y = \{x \in X : \langle s_0, \eta(x, y) \rangle + g(x) - g(y) < 0$ for any $s_0 \in T(y)\}$ is convex. To see this, let $x_1, x_2 \in B_y$ and $\alpha, \beta \ge 0$ such that $\alpha + \beta = 1$. Then for each $s_0 \in T(y)$ we have

$$\langle s_0, \eta(x_1, y) \rangle + g(x_1) - g(y) \in -\text{intP}$$
(1)

and

$$\langle s_0, \eta(x_2, y) \rangle + g(x_2) - g(y) \in -\text{intP}$$
(2)

multiplying (1) by α and (2) by β and adding, we have

 $\alpha \langle s_0, \eta(x_1, y) \rangle + \alpha g(x_1) - \alpha g(y) + \beta \langle s_0, \eta(x_2, y) \rangle + \beta g(x_2) - \beta g(y) \notin \alpha W(y) + \beta W(y).$

Since $\eta(., .)$, g are affine and W is concave, we have

$$\langle s_0, \eta(\alpha x_1 + \beta x_2, y) \rangle + g(\alpha x_1 + \beta x_2) - g(y) \in W(y)$$

or

$$\langle s_0, \eta(\alpha x_1 + \beta x_2, y) \rangle + g(\alpha x_1 + \beta x_2) - g(y) < 0$$

and hence B_y is convex.

Remark 2.1 (i) Theorem 2.1 generalizes and improves the corresponding results in [1,11].(ii) Corrollary 2.1 is a generalization of corrollary 2.1 in [11].

Theorem 2.2 Let X be a compact convex subset of Banach space E and Y a Banach space with convex cone P such that int $P \neq \phi$ and $P \neq Y$. Let $X = \bigcup_{n=1}^{\infty} X_n$ where $\{X_n\}_{n=1}^{\infty}$ is an increasing sequence of nonempty compact sets in the sense that $X_n \subseteq X_{n+1}$ for all $n \in N$. Assume that:

- (i) $T: X \to 2^{L(E,Y)}$ is a lower semicontinuous mapping;
- (ii) $g: X \to Y$ is a continuous mapping;
- (iii) $\eta: X \times X \to Y$ is a continuous mapping such that $\eta(x, x) = 0$ for all $x \in X$;
- (iv) the multivalued mapping $W(x) = Y/\{-intP\}$ has a closed graph in $x \times Y$;

- (v) for each $y \in X$, $B_y := \{x \in X : there exists \in T(y) such that <math>\langle s, \eta(x, y) \rangle + g(x) g(y) < 0\}$ is convex.
- (vi) for each sequence $\{y_n\}_{n=1}^{\infty}$ in X with $y_n \in X_n$, $n \in N$ which is escaping from X relative to $\{X_n\}_{n=1}^{\infty}$ there exists $m \in N$ and $x_m \in X_m$ such that

 $\langle s_m, \eta(x_m, y_m) \rangle + g(x_m) - g(y_m) < 0.$

Then there exists $y^* \in X$ such that

$$\langle s^*, \eta(x, y^*) \rangle + g(x) - g(y^*) \neq 0$$
, for any $s^* \in T(y^*)$.

Proof Since for each $n \in N$, X_n is compact and convex set in E, applying Theorem 2.1, we have for all $n \in N$, there exists $y_n \in X_n$ such that

$$\langle s_n, \eta(x, y_n) \rangle + g(x) - g(y_n) \not< 0, \quad \text{for all } s_n \in T(y_n)$$
(3)

suppose that the sequence $\{y_n\}_{n=1}^{\infty}$ be escaping sequence from X relative to $\{X_n\}_{n=1}^{\infty}$. By (vi) there exists $m \in N$ and $x_m \in X_n$ such that

$$\langle s_m, \eta(x_m, y_m) \rangle + g(x_m) - g(y_m) < 0,$$

which contradicts (3). Hence $\{y_n\}_{n=1}^{\infty}$ is not an escaping sequence from X relative to $\{X_n\}_{n=1}^{\infty}$. Therefore, there exists $r \in N$ and there is some subsequence $\{y_{j_n}\}$ of $\{y_n\}_{n=1}^{\infty}$ which must lie entirely in X_r . Since X_r is compact, there is a subsequence $\{y_{i_n}\}_{i_n \in \wedge}$ of $\{y_{j_n}\}$ in X_r and there exists $y^* \in X_r$ such that $y_{i_n} \to y^*$, where $i_n \to \infty$. Since $\{X_n\}_{n=1}^{\infty}$ is an increasing sequence we have for all $x \in X$ there exists $i_0 \in \wedge$ with $i_0 > r$, such that $x \in X_{i_0}$ for all $i_n \in \wedge$ and $i_n > i_0$, we have $x \in X_{i_0} \subseteq X_{i_n}$ and $T(y_{i_n}) \subseteq T(X_r)$ such that

$$\langle s_{i_n}, \eta(x, y_{i_n}) \rangle + g(x) - g(y_{i_n}) \not< 0$$
, for any $s_{i_n} \in T(y_{i_n})$,

which implies that

$$\langle s_{i_n}, \eta(x, y_{i_n}) \rangle + g(x) - g(y_{i_n}) \in W(y_{i_n}),$$

using the same argument as in Theorem 2.1, we have

$$\langle s^*, \eta(x, y^*) \rangle + g(x) - g(y^*) \not< 0.$$

The result follows.

References

- Ansari, Q.H.: On generalized vector variational-like inequalities. Ann. Sci. Math. Quebec 19, 131– 137 (1995)
- Border, K.C.: Fix point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge (1985)
- Chen, G.Y.: Existence of solutions for a vector variational inequality: an extension of Hartman-Stampacchia theorem. J. Optim. Theory Appl. 74, 445–456 (1992)
- Chen, G.Y., Chang, G.M.: Vector variational inequalities and vector optimization. Lecture Notes in Economics and Mathematical Systems, 285, Springer-Varlag (1987)
- Chen, G.Y., Yang, X.Q.: Vector complementarity problems and its equivalences with weak minimal element in ordered spaces. J. Math. Anal. Appl. 153, 136–158 (1990)
- Chen, G.Y., Craven, B.D.: A vector variational inequality and optimization over an efficient set. Zeitscrift for Operations Reasearch 3, 1–12 (1990)
- 7. Fan, K.: A generalization of Tychonoffs fixed point theorem. Math. Anal. 142, 305-310 (1961)

- Giannessi, F.: Theorems of alternative quadratic programs and complementarity problems. In: Cottle, R., Giannessi, F., Lions J.L. (eds.) Variational Inequalities and Complementarity Problems. Wiley, Chichester (1990)
- Giannessi. F.: In: Cottle, R., Giannessi, F., Lions, J.L. (eds.) Vector variational inequality and vector equilibria mathematical theorems. Kluwer Acadamic Publishers, Dordrecht/Boston/London (2000)
- Lee, G.M., Kim, D.S., Lee, B.S.: Generalized vector variational inequality. Appl. Math. Lett. 9(1), 39–42 (1996)
- Lee, G.M., Kim, D.S., Lee, B.S., Chen, G.Y.: Generalized vector variational inequality and its duality and set-valued maps. Appl. Math. Lett. 11(4), 21–26 (1998)
- Lee, G.M., Kim, D.S., Lee, B.S., Cho, S.J.: Generalized vector variational inequality and fuzzy extention. Appl. Math. Lett. 6, 47–51 (1993)